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Relativistic spin-1 bosons in a magnetic field 

J Daicic and N E Frankel 
School of Physics, University of Melbourne, ParL-ville, Victoria 3052, Australia 

Received ?U lune 1992 

Abstract. The quantum mechanics of charged, massive, spin-1 bosons in the presence 
of a homogeneous magnetic field (HMF) is SNdied using a six-component wavefunction 
formalism. The energy eigenvalues are compared with those previously obtained via other 
formalisms, the equations of motion of certain operators are given, and the positive and 
negative energy eigensolutions are obtained by the use of a ladder operator method. 
The six-component current for the case of general external electromagnetic fields is also 
displayed and finally, the employment of the eigensolutions and furrent in a study of a 
spin-1 boson-antiboaon plasma is discussed. 

1. Introduction 

In a previous paper [I], the present authors developed a study of the relativistic spin-1 
boson plasma with no external fields present. This work included an investigation of 
the solution of the Proca equations [2] for free spin-1 bosons, in the sixcomponent 
formalism of Sakata and Thketani [3]. The aim of the present paper is to extend 
the study to the quantum mechanics of relativistic spin-1 bosons in external fields, in 
particular, a homogeneous magnetic field (HMF). 

We begin with a review of previous work on this topic. Corben and Schwinger [4], 
followed by %ai and co-workers [S-71, Krase et a1 [SI, Weaver [9], and Vijayalakshmi 
er al [lo] have attempted to find the energy eigenvalues of a relativistic spin-1 particle 
in external fields, in some cases with the inclusion of non-minimal electromagnetic 
couplings in the equations of motion. These authors employ a variety of spin-1 
formalisms (see our review in section 1 of [l]), and in the papers of Tsai and co- 
workers [S-71 and Vijayalakshmi et al [IO], a comparison of the energy eigenvalues 
obtained from the differing formalism is made. 

As we shall discuss in section 3 of the paper, the inclusion of an anomalous 
magnetic moment coupling, so that the gyromagnetic ratio of the spin-I boson has 
a value of g = 2, simplifies the eigenvalues to the familiar form of solution of a 
relativistic particle in a HMF, as given by Johnson and Lippmann [ I l l  in the case of 
the Dirac particle. Weaver [9] and Durand [12] refer to this magnetic moment as the 
‘natural’ one for bosons in the presence of external fields. In this paper, we present 
a new treatment of the quantum mechanics of this system by following a canonical 
equations-of-motion procedure for obtaining the diagonalized Hamiltonian, energy 
eigenvalues and wavefunctions. 

Following the method developed by Johnson and Lippmann [I11 for relativistic 
spin-h fermions, we present in section 3, for the first time, the explicit forms for the 
shomponent wavefunctions in the presence of a HMF, in the case of both positive 
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energy @article) and negative energy (antiparticle) solutions of the Sakata-Taketani 
equation. A new expression for the single-particle sixcomponent current in the case 
of general external electromagnetic fields is also obtained. 

A treatment of the solutions of the Klein-Gordon equation for spinless particles 
in a HMF using a two-component formalism is given by Witte et a2 [13], and these 
solutions are later employed in a detailed study of the spin-0 boson-antiboson plasma 
by Witte et a1 [14]. Similarly, the spin-; solutions of Johnson and Lippmann I l l ]  
are employed by Kowalenko et a1 [lS] in the response theory of a spin-; fermion- 
antifermion plasma in a HMF. We discuss in section 4 how the wavefunctions 
and current of section 3 could be employed in a self-consistent random-phase 
approximation (RPA) treatment of a spin-1 boson-antiboson plasma in a HMF. This 
would be the extension of our study in [l]  of a relativistic spin-I boson plasma in no 
external fields. 

2. Review of spin-1 bosons in external fields 

Corben and Schwinger [4] were the first to present a general theory for massive 
particles of spin 1 and arbitrary magnetic moment. They did so by generalizing the 
equations of Proca [2], and were able to study the motion of such particles in an 
external Coulomb field. They also found the current and stres-energy tensor for 
this system, employing the vector formalism for the wavefunctions. Their work is 
fundamental, and provides the basis for many other studies. Of particular utility is 
the work of Young and Bhdman [16], who further generalize the Proca equations to 
the case of explicit arbitrary anomalous quadrupole couplings, and proceed to f i d  
the Sakata-Taketani sixcomponent Hamiltonian for this generalized case. It is this 
Hamiltonian, for the specific case of no anomalous quadrupole coupling, a magnetic 
g-factor of 2, and the external field being a HMF, which we shall employ in section 3. 

Young and Bludman [16] derive this Hamiltonian by a different technique to 
that of Heitler [17], who derives a Hamiltonian for the case of minimal coupling 
only. Young and Bludman reduce the Proca equations into a six-component spinor 
equation by explicitly eliminating the dynamically redundant components of the spin-1 
fields. Heitler, however, employs a technique whereby the Proca equations are written 
in the first-order lo-component Duffi-Kemmer [18] form: 

where rp is the canonical 4-momentum, and the pr are 10 x 10 matrices, with the 
property 

A technique known as Pierce decomposition is employed to remove the 
dynamically redundant components of the wavefunction $, by separating the Duffin- 
Kemmer ring (defined by (2.2) above), into two sub-rings, one of which contains only 
the dynamically redundant field components, and the other yielding the minimally 
coupled Sakata-Taketani equation, and associated operators. However, this technique 
is far more difficult to employ when the anomalous moments are incorporated into 
the equations of motion. 
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None the less, it is possible to obtain the appropriate generalization of the Duffin- 
Kemmer equation (2.1) with an anomalous magnetic moment coupling y. This is 
given by Vijayalalcshmi et al [lo] and is 

( p ” ~ ,  - im  + R ( z ) )  $ = 0 (2.3) 

where 

and = [P,, PA. 
It is of interest, given the superficial similarity of (2.1) to the Dirac equation, that 

the anomalous magnetic moment coupling is not of the simple ugu Fe“ form of the 
spin-; case. 

Durand 1121 has proposed that the elimination of this latter term leads to new 
equations of motion which have a different anomalous moment coupling to the 
generalized Proca equation of Corben and Schwinger [4]. However, Vijayalakshmi et 
a1 [lo] show that with the choice of R ( x )  given in (2.3) that causality is not violated, 
contrary to the case where only the up,Ffiy  term is kept. 

Such a choice of couplings has its own pathologies, the most serious problem being 
the appearance of complex energy eigenvalues for magnetic fields of higher than 
a critical magnitude, as demonstrated by Ba i  and co-workers [5-7] and Vel0 and 
Zwangzinger [19]. Furthermore, the anomalous magnetic moment induces electric 
quadrupole terms in the Hamiltonian and current, when the external fields are fully 
generalized to include time-dependent and (possibly) inhomogeneous electric and 
magnetic fields. 

The energy eigenvalues of the non-minimally coupled spin-1 particle in a HMF 
are studied by Krase et al [8] using the sixcomponent Shay-Good formalism [20] for 
spin-1 particles, which is distinct from the Sakata-metmi formalism (see section 2 
of [l]). These authors obtain for one branch of the energy eigenvalues (for g = 2, 
i.e. y = 1) 

E;,,,,, = ptc2 + m2c4 + ehcB (2n - 2s + 1) . (2.5) 

where n is a Landau-level quantum number. 
This is similar to the result obtained by Johnson and Lippmann [ll] for the 

Dirac particle in a B-field, save for the factor of 2 premultiplying the spin-projection 
quantum number s. Krase et a2 [8] display the energy eigenvalues for general values 
of the g-factor, and it is clear from their work that, even in the case g = 1, i.e. 
y = 0 (no anomalous magnetic moment coupling), the energy eigenvalues take on a 
far more complicated form. These authors are also able to determine the Shay-Good 
wavefunctions in a HMF, but it is to be noted that their approach is quite different to 
that of this paper. 

Goldman and Tsai [6] also study the energy eigenvalues obtained via the Shay- 
Good formalism, and Tsai [21] adds a multispinor formalism result to this work. 
Goldman et al [7] find the energy eigenvalues directly from the generalized Proca 
vector theory. For the case of g = 2 (y = l), these reduce to the result obtained by 
Krase et al, equation (2.5). The only author to study the eigenvalues obtained from 
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the Sakata-Taketani formalism, Weaver 191, fmds that in the case of g = 2 (y = l), 
they yield a cubic equation in E2.  As we shall show in the next section, this is due 
to the usc of an incorrect non-minimally coupled Hamiltonian by this author, and 
elsewhere [22]. Our use of the correct Hamiltonian leads to a canonical result for 
the energy eigenvalues, and allows a direct evaluation of the eigensolutions. 

J Daicic and N E  Frank1 

3. Quantum mechanics of a spin-1 particle in a WMF 

3.1. Equations of motion 

The Sakata-Taketani Hamiltonian for the case of a relativistic spin-1 particle with 
a g-factor of 2, in a HMF (of magnitude B and purely in the z direction), can be 
obtained by setting y = 1 and the anomalous quadrupole coupling q = 0 in the more 
general Hamiltonian given by Young and Bludman [16]: 

with @ the scalar potential, the pi being the Pauli matrices in a representation where 
p3  is diagonal (po = p3 + ip2), and the ai are the spin-1 matrices with u2 diagonal, 
having the group properties (see section 3 of [l]) 

ucu Z l k  + ukajni = bijak + 6jkai [a. I '  a.] J = iEijkak. (3.2) 

The canonical momenta T~ have the commutation relation 

ieh 
[?Ti,7rj] = - B, 

C 

The Hamiltonian (3.1) differs from that employed by Weaver [9]. which is 

(3.3) 

(3.4) 

The appropriate normalization for the six-component wavefunction q is given by 

where c has a value of +1 for positive energy solutions, and -1 for negative energy 
solutions. As is the usual case for bosons (35)  indicates a normalization to charge. 

Following Johnson and Lippmann Ill], we End the time evolution of the 
momentum and position operators, employing the Heisenberg equations of motion: 

irz = w ~ ~ ~ ? T ~  - weip2a, (U. x )  - ueipZ (U * x )  ag (3.6) 

7r Y =-U c ~ ~ ~ z  t ucip2u, (cr. x )  t wCb2 (U x )  az (3.7) 

ir, = o  (3.8) 
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with wc = e B / m c ,  and for the operator r: 

mr = p o x  - i p p  (U x )  - ip2(u .  x ) u  . (3.9) 
Combining the equations of motion for the position and momentum operators 

gives 

(3.10) 
(3.11) 

Thus, the equations of motion have reduced to the same form as given by Johnson 
and Lippmann [11] and Witte et a1 [13] for the spin-; and spin4 cases, and thus the 
equations of motion are identical for particles of up to and including spin 1 (but only 
when the spin-1 particles have a g-factor of 2, i.e. y = 1). The equations of motion 
imply 

(3.12) 

(3.13) 

with (zo,yo) being the co-ordinates of the centre of gyration. They satisfy the 
commutation relation 

(3.14) ihc . 
e B  [zo,yo] = -- = -1x 

which implies the uncertainty relationship 

A z o A y 0  2 & A z .  (3.15) 

Here, X = is the Larmor length, a fundamental quantum scale length for 
a particle in the HMF. The values v i  = zi + y," and 4 = (I - z0)' t (y - yo)' are 
constants of the motion. This implies that 

[4 ,x ]  = 0 (3.16) 

where K: = T: t T:, which is identical to the classical result (see 1111). 

3.2 Enetp eigenvalues 
We now obtain the energy eigenvalues, by simply squaring the Hamiltonian (3.1). For 
that purpose, the following identities are useful: 

[ u . x , ( ~ ' - - u . B ) ]  2eh = O  
C 

(,,. x)4 = -[ 1 ='(U . ,T)~ + (U .x)' K' - - ( U -  2eh x) ' (u .  B )  2 C 

{ ( U .  B )  , ( U .  x)'} = (d- U .  E + ( B .  ..)(U. x )  
C 

(3.17) 

(3.18) 

(3.19) 
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We obtain 
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X’ = n2c2 -+ m2c4 - 2ehcuT, B .  (3.20) 

We separate x2 into components parallel and perpendicular to the magnetic field, 
and take us to be diagonal, with eigenvalues s = - l , O , l .  

Thus, we have 

X’ = 2 m c ’ ~ ~  + pzc’ + m2c4 - 2 e f i c ~ s  (3.21) 

where 

(3.22) 

The eigenvalues are those of a quantum-mechanical harmonic oscillator (see [Ill). 
These are 

E(.+;) n = 0 , 1 , 2 , 3  ,... 
m c  (3.23) 

As [7iI,Xz] = 0, X 2  and XI will have simultaneous eigenvectors. Therefore, 
we obtain for the energy eigenvalues the same result as Krase ef al [SI and Tsai and 
co-workers [S-71, equation (2.5). As pointed out earlier, Weaver [9] does not obtain 
this result, suggesting that the Sakata-Taketani formalism yields different eigenvalues 
to other formalism. It is evident that in the particular case of g = 2 (y = I), this is 
not the case. 

As can be seen from (2.5), the energy eigenvalues become complex if 

m2c3 
B’et2. (3.24) 

In order to show that this restriction is not too severe, we give an estimate of this 
critical value, in the case of the particle being a p-meson of mass approximately 
770 MeV 

BCGgica, N 1 x 10” gauss. (3.25) 

Given that the magnetic field of a pulsar is of the order of 10’’ gauss, this critical 
field strength is extremely high, and thus for any physically feasible system, we would 
suggest that the energy eigenvalues remain real. None the less, theoretical attempts 
to deal with this pathology have been addressed in previous studies [10,23]. 

3.3. Eigenfinctwns 

The eigenfunctions are chosen to be simultaneous solutions of ‘H, p2  and yo, thus 
the centre of gyration is located in the plane y = yo, and z0 is unspecified. With 
the asymmetric gauge A = -;By, this choice is equivalent to p ,  = -eByo being 
selected as one of the complete set of commuting operators, in order to completely 
specify the wavefunctions. 
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The procedure will be similar to that of Johnson and Lippmann [ll],  where 
eigenfunctions of ‘H are constructed from solutions of the eigenfunction equation 
for B2, which has simultaneous solutions with ‘Hl. We begin with the positive energy 
solutions. 

With the above asymmetric gauge choice, the ladder operators for Rl are 

r* = rz F in,, . 
Consider a wavefunction \Ir that satisfies the eigenvalue equation 

X\Ir=EQ.  

The wavefunctions may be found by considering solutions of the equation 

(71’ - E*) x = (‘H - E )  (71 t E )  x = 0 

with 

QJ = (71 t E )  x . 
We choose x to be an eigenfunction of the spin operator os, so that 

o , x , = s x ,  s=O,*l. 

We then have the second-order equation 

- (pfc’ + m2c4 - 2ehcBs - E’) 1 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

To fully specify the solutions x,,,, we choose to make them eigenfunctions of p3, 

P3X8,n = Xs,n . (3.32) 

with eigenvalue 1. Hence 

So, we have 

with 

(3.33) 

In the chosen gauge, the eigenfunctions of 31, are of the form (see reference [13]) 

where H, is a Hermite polynomial of order n, and the coefficient ICa+ is to be 
determined by normalization. 
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Employing (3.29), we obtain explicitly the wavefunctions *s,n: 

The normalization is given by (3.9, and the negative energy solutions are found by 
premultiptication of En,3,P,, p z  and p ,  by a factor of -1, equivalent to changing the 
sign of the charge in the Proca equations. 

We obtain for the eigensolutions a:,*: 

(3.37) 

(3.38) 
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/ 0 

(3.39) 

hC2EP,H*+1 (ad 
;tp:c2)Hn(aeI ii2CZ 

with a, = ( l / X )  (y - cyO), and where ,C= and ,Cz are lengths of the system in the I 
and z directions respectively. 

3.4. Current 

The six-component current is obtained by taking the vector current of Corben and 
Schwinger [4], and using a procedure developed by Young and Bludman [MI, by 
which they obtain the generalized six-component Hamiltonian (with the inclusion 
of anomalous moments) from the generalized Proca equations. This is done by 
explicit elimination of the dynamically redundant components of the spin-1 fields, as 
Pierce decompostion of the Duffin-Kemmer formalism for the case where anomalous 
moments are included is considerably more intricate. 

The vector current given in [4] is 

j, = ie [uLu,” - u ~ ~ u ~  + ya, (uLu” - ULU,j] (3.40) 

where U, is the vector field, and U,, = neU,  - n,U,. 
The terms multiplying y are those due to the anomalous magnetic moment. 

Setting y = 1 gives g = 2. The six-component current we obtain from transforming 
(3.40) is 

P, (1 + p1 t bo) ri - P, (1 + p1 t p3 t 2ip2) Io; ( U .  x )  t (U . 

+ 1 (5p3 - ipz + p1 + 1) (5 x u ) ~  + =p3 (1 + p l )  E, 

oj 1 
ie 

2 



4. Application to a pair plasma in a HMF 

Previous studies have employed the self-consistent WA method for the determination 
of the modes of oscillation of particle-antiparticle plasmas in the cases spin-0 [14, U], 
spin-; [U] and, for no external fields, spin-1 [I] particles. The wavefunctions Q of 
section 3, equations (3.37)-(3.39), and the Current (3.41), could similarly be employed 
in a study of a spin-1 pair plasma in a HMF. 

The first step would be to secondquantize the wavefunctions and relevent 
operators. The second-quantized field is 

Ifi = (b,,,,p,(t)Q;t.n,p,(r) t ~ ~ , n , p : ( ~ ) ~ ~ , n , ~ ~ ( r ) }  (4.1) 
vvs 

where bs,n,p, and ds,n,p, are respectively the destruction operators for a particle and 
an antiparticle state. 

Operators, specifically the Hamiltonian (3.1) and current (3.41), are second- 
quantized by the procedure 

6 = J d 3 ~ & ' p 3 U & .  (4.2) 

The current (3.41) would include both electric and magnetic fields in an expansion 
to a first-order perturbative potential A r ( r ,  t ) ,  due to interactions within the plasma 
itself. Similarly, the full Hamiltonian, including coupling to electric and magnetic 
fields, is required, and is given by Young and Bludman [16]. For a g-factor of 2 
(y = l), it is 

1 , . 1  2 3~ = e@ t p3  m c 2  - -(U. B )  t P O - r  - 1p2- ( U .  r) ( mc eh ) 2 m  m 
ieh 

2 m  c 
ieh 

2 m W  
e2h2 

2m3c4 

-- (1 t p l ) [ ( u . E ) ( u .  =)-b. ( E  x =)- E . = I  

t- (1 - p l ) [ ( u . = ) ( u .  E )  - iu. (r x E )  - = . E ]  

-- ( P ~  - [(U . El2 - E'] . (4.3) 
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The linearization in the perturbative potential :A:(., t )  gives the linearized 
interaction Hamiltonian ‘HI, and second-quantization its operator form. This would 
allow the determination of the equations of motion of the linearized boson and 
antiboson wavefunctions. Second-quantization of the current would then allow 
extraction of the polarization tensor via 

J ” ( k )  = C I I ; ( k , k ‘ ) A ’ ( k ’ )  
k‘ 

(4.4) 

Note that the relationship is one in Fourier space, and thus the potential and current 
must be Fourier-transformed. 

Once the polarization tensor is extracted, then a mode analysis of the plasma 
similar to that in [I] or [14] can be done. Considering the complexity of the 
Hamiltonian (4.3), and more so the ovenvhelming intricacy of the current (3.41). 
we do not propose to carry out the full procedure involved, but present this brief 
outline to show that the problem could certainly be attempted in theory, and is a 
direct application of the spin-1 boson quantum mechanics we have developed in this 
paper. It is, however, evident that a full study of a spin-1 pair plasma in a HMF, 
as mooted in 111, is a goal to be achieved only through an inordinately arduous 
calculation. 

5. Conelusion 

In section 2 of this paper, we gave a thorough outline of previous work in the 
development of the quantum mechanics of spin-1 bosons in a HMF, and discussed the 
eigenvalues obtained for this system via differing spin-1 formalisms, with particular 
reference to the case where the g-factor is 2 (y = 1). In section 3, we developed the 
quantum mechanics of this system, employing the six-component formalism of Sakata 
and Taketani, giving the energy eigenvalues and the wavefunctions for both the boson 
and antiboson cases. We also derived the six-component current for the general case 
of external electric and magnetic fields. In section 4, we discussed how our results of 
section 3 could be employed in a study of the relativistic boson-antiboson plasma in 
an external HW, the generalization of work presented previously in [l] on the spin-1 
boson plasma in no external fields. 
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